363 research outputs found

    Integrated Cyberattack Detection and Resilient Control Strategies using Lyapunov-Based Economic Model Predictive Control

    Get PDF
    The use of an integrated system framework, characterized by numerous cyber/physical components (sensor measurements, signals to actuators) connected through wired/wireless networks, has not only increased the ability to control industrial systems, but also the vulnerabilities to cyberattacks. State measurement cyberattacks could pose threats to process control systems since feedback control may be lost if the attack policy is not thwarted. Motivated by this, we propose three detection concepts based on Lyapunov‐based economic model predictive control (LEMPC) for nonlinear systems. The first approach utilizes randomized modifications to an LEMPC formulation online to potentially detect cyberattacks. The second method detects attacks when a threshold on the difference between state measurements and state predictions is exceeded. Finally, the third strategy utilizes redundant state estimators to flag deviations from “normal” process behavior as cyberattacks

    Interactions between Control and Process Design under Economic Model Predictive Control

    Get PDF
    conomic model predictive control (EMPC) is a model-based control scheme that integrates process control and economic optimization, which can potentially allow for time-varying operating policies to maximize economic performance. The manner in which an EMPC operates a process to optimize economics depends on the process dynamics, which are fixed by the process design. This raises the question of how process and EMPC designs interact. Works which have addressed process and control design interactions for steady-state operation have sought to simultaneously develop process designs and control law parameters to find the most profitable way to operate a process that is able to prevent process constraints from being violated and to optimize capital costs in the presence of disturbances. Because EMPC has the potential to operate a process in a transient fashion, this work first focuses on how EMPC and process design interact in the absence of disturbances. Using small-scale process examples, we seek to understand the fundamental nature of the interactions between EMPC and process design, including how these interactions can impact computational complexity of the controller and the design procedure. We subsequently utilize the insights gained to suggest controller design variables which might be considered as decision variables for a simultaneous process and control design problem when disturbances are considered

    Actuator Cyberattack Handling Using Lyapunov-based Economic Model Predictive Control

    Get PDF
    Cybersecurity has gained increasing interest as a consequence of the potential impacts of cyberattacks on profits and safety. While attacks can affect various components of a plant, prior work from our group has focused on the impact of cyberattacks on control components such as process sensors and actuators and the development of detection strategies for cybersecurity derived from control theory. In this work, we provide greater focus on actuator attacks; specifically, we extend a detection and control strategy previously applied for sensor attacks and based on an optimization-based control technique called Lyapunov-based economic model predictive control (LEMPC) to detect attacks impacting the control action applied by the actuators when the state measurements provided to the controller are accurate. Closed-loop stability guarantees are rigorously derived. A continuous stirred tank reactor is simulated to elucidate aspects of the detection strategy proposed

    Lyapunov-Based Economic Model Predictive Control for Detecting and Handling Actuator and Simultaneous Sensor/Actuator Cyberattacks on Process Control Systems

    Get PDF
    The controllers for a cyber-physical system may be impacted by sensor measurement cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our group has developed a theory for handling cyberattacks on process sensors. However, sensor and actuator cyberattacks have a different character from one another. Specifically, sensor measurement attacks prevent proper inputs from being applied to the process by manipulating the measurements that the controller receives, so that the control law plays a role in the impact of a given sensor measurement cyberattack on a process. In contrast, actuator signal attacks prevent proper inputs from being applied to a process by bypassing the control law to cause the actuators to apply undesirable control actions. Despite these differences, this manuscript shows that we can extend and combine strategies for handling sensor cyberattacks from our prior work to handle attacks on actuators and to handle cases where sensor and actuator attacks occur at the same time. These strategies for cyberattack-handling and detection are based on the Lyapunov- based economic model predictive control (LEMPC) and nonlinear systems theory. We first review our prior work on sensor measurement cyberattacks, providing several new insights regarding the methods. We then discuss how those methods can be extended to handle attacks on actuator signals and then how the strategies for handling sensor and actuator attacks individually can be combined to produce a strategy that is able to guarantee safety when attacks are not detected, even if both types of attacks are occurring at once. We also demonstrate that the other combinations of the sensor and actuator attack-handling strategies cannot achieve this same effect. Subsequently, we provide a mathematical characterization of the “discoverability” of cyberattacks that enables us to consider the various strategies for cyberattack detection presented in a more general context. We conclude by presenting a reactor example that showcases the aspects of designing LEMPC

    Computational fluid dynamics modeling of a wafer etch temperature control system

    Get PDF
    Next-generation etching processes for semiconductor manufacturing exploit the potential of a variety of operating conditions, including cryogenic conditions at which high etch rates of silicon and very low etch rates of the photoresist are achieved. Thus, tight control of wafer temperature must be maintained. However, large and fast changes in the operating conditions make the wafer temperature control very challenging to be performed using typical etch cooling systems. The selection and evaluation of control tunings, material, and operating costs must be considered for next-generation etching processes under different operating strategies. These evaluations can be performed using digital twin environments (which we define in this paper to be a model that captures the major characteristics expected of a typical industrial process). Motivated by this, this project discusses the development of a computational fluid dynamics (CFD) model of a wafer temperature control (WTC) system that we will refer to as a “digital twin” due to its ability to capture major characteristics of typical wafer temperature control processes. The steps to develop the digital twin using the fluid simulation software ANSYS Fluent are described. Mesh and time independence tests are performed with a subsequent benchmark of the proposed ANSYS model with etch cooling system responses that meet expectations of a typical industrial cooling system. In addition, to quickly test different operating strategies, we propose a reduced-order model in Python based on ANSYS simulation data that is much faster to simulate than the ANSYS model itself. The reduced-order model captures the major features of the WTC system demonstrated in the CFD simulation results. Once the operating strategy is selected, this could be implemented in the digital twin using ANSYS to view flow and temperature profiles in depth

    On-line Process Physics Tests via Lyapunov-based Economic Model Predictive Control and Simulation-Based Testing of Image-Based Process Control

    Get PDF
    Next-generation manufacturing involves increasing use of automation and data to enhance process efficiency. An important question for the chemical process industries, as new process systems (e.g., intensified processes) and new data modalities (e.g., images) are integrated with traditional plant automation concepts, will be how to best evaluate alternative strategies for data-driven modeling and synthesizing process data. Two methods which could be used to aid in this are those which aid in testing data-based techniques on-line, and those which enable various data-based techniques to be assessed in simulation. In this work, we discuss two techniques in this domain which can be applied in the context of chemical process control, along with their benefits and limitations. The first is a method for testing data-driven modeling strategies on-line by postulating the experimental conditions which could reveal if a model is correct, and then attempting to collect data which could help to reveal this. The second strategy is a framework for testing image-based control algorithms via simulating both the generation of the images as well as the impacts of control on the resulting systems

    RESULTADO DO AUXÍLIO DE MONITORIA NA DISCPLINA DE FÍSICA GERAL I NO CURSO DE ENGENHARIA CIVIL - 43

    Get PDF
    O programa de monitoria tem como intuito o auxílio dos discentes de cursos de ensino superior no processo de aprendizagem de matérias para diminuir o número de evasão dos cursos nos semestres inicias e aumentar a qualidade de ensino das turmas. Dito isso, seguinte trabalho busca expor os resultados da aplicação da aplicação de monitores na disciplina Física Geral I do curso de Engenharia Civil da Universidade do Sul e Sudeste do Pará (Unifesspa)

    Test Methods for Image-Based Information in Next-Generation Manufacturing

    Get PDF
    Typical control designs in the process systems engineering literature have assumed that the primary sensing methodologies are traditional instruments such as thermocouples. Dig- italization is changing the landscape for manufacturing, and data-based sensing modalities (e.g., image-based sensing) are becoming of greater interest for plant control. These considerations require novel test/evaluation solutions. For example, process systems engineering researchers may wish to test image-based sensors in simulation. In this work, we provide preliminary thoughts on how image-based technologies might be evaluated via simulation for process systems

    Development of directed randomization for discussing a minimal security architecture

    Get PDF
    Strategies for mitigating the impacts of cyberattacks on control systems using a control-oriented perspective have become of greater interest in recent years. Our group has contributed to this trend by developing several methods for detecting cyberattacks on process sensors, actuators, or both sensors and actuators simultaneously using an advanced optimization-based control strategy known as Lyapunov-based economic model predictive control (LEMPC). However, each technique comes with benefits and limitations, both with respect to one another and with respect to traditional information technology and computer science-type approaches to cybersecurity. An important question to ask, therefore, is what the goal should be of the development of new control-based techniques for handling cyberattacks on control systems, and how we will be able to benchmark these as “successful” compared to other techniques to drive development or signal when the research in this direction has reached maturity. In this paper, we propose that the goal of research in control system cybersecurity for next-generation manufacturing should be the development of a security architecture that provides flexibility and safety with lowest cost, and seek to clarify this concept by re-analyzing some of the security techniques from our prior work in such a context. We also show how new methods can be developed and analyzed within this “minimum security architecture” context by proposing a technique which we term “directed randomization” that may require less sensors to be secured in a system than some of our prior methods, potentially adding flexibility to the system while still maintaining security. Directed randomization seeks to utilize the existence of two possible stabilizing inputs at every sampling time to attempt to create a challenge for an attacker for setting up an arbitrary sensor attack policy without being detected within a finite number of sampling periods. We discuss benefits and limitations of this technique with respect to our prior cybersecurity strategies and also with respect to extended versions of these prior concepts, such as image-based control and distributed control, to provide further insights into the minimum security concep

    Quantum Computing and Resilient Design Perspectives for Cybersecurity of Feedback Systems

    Get PDF
    Cybersecurity of control systems is an important issue in next-generation manufac- turing that can impact both operational objectives (safety and performance) as well as process designs (via hazard analysis). Cyberattacks differ from faults in that they can be coordinated efforts to exploit system vulnerabilities to create otherwise unlikely hazard scenarios. Because coordination and targeted process manipulation can be characteristics of attacks, some of the tactics previously analyzed in our group from a control system cybersecurity perspective have incorporated randomness to attempt to thwart attacks. The underlying assumption for the generation of this randomness has been that it can be achieved on a classical computer; however, quantum computers can also create random behavior in the results of computations. This work explores how errors in quantum hardware that can create non-deterministic outputs from quantum computers interact with control system cybersecurity. These studies serve as a reminder of the need to incorporate cybersecurity considerations at the process design stage
    corecore